

A Drivechain BIP enabling the OP_COUNT_ACKS opcode to add Bitcoin drivechain capabilities as a soft-fork.

BUILDING ON BITCOIN

Conference
Lisboa, Portugal, 3-4 July 2018

Sergio Demian Lerner

Chief Scientist, RSK Labs

www.rsk.co

About me @SDLerr

Chief Scientist, RSK Labs Inc.

Code	Product	Description		
2012	Bitcoin Core	Lack of orphan tx limit prior v0.5.3		
CVE-2012-3789	Bitcoin Core	Multiple DoS Vulnerabilties in Satoshi client		
CVE-2012-4683	Bitcoin Core	Targeted DoS by CPU exhaustion using alerts		
CVE-2012-4684	Bitcoin Core	Network-wide DoS using malleable signatures in alerts		
CVE-2013-2272	Bitcoin Core	Remote discovery of node's wallet addresses		
CVE-2013-2292	Bitcoin Protocol	A transaction that takes 3 minutes to verify using O(n^2) hashing		
CVE-2013-2293	Bitcoin Core	Continuous hard disk seek		
2014	BitcoinJ	Security vulnerability in BouncyCastle ECDSA (BJB-22)		
2014	Ethereum/Bitcoin	Unhandled point-at-infinity in public key recovery		
2016	Bitcoin protocol	A Bitcoin transaction that takes at least 5 hours to verify		
2016	Ethereum	Uncle Mining, an Ethereum Consensus Protocol Flaw		
CVE-2017-12842	Bitcoin protocol	Leaf-Node weakness in Bitcoin Merkle Tree Design		

Bitcoin & Radical Innovation

Where the new transactions go?

- •Overlay protocols
 •Extension blocks

 Preserve the 10 minute block interval
 Increases block size in the same network
- Parallel blockchains (now generically called sidechains)

Sidechains: who controls the locked funds?

- Consensus-enforced (original SPV sidechains)
- Federation
- Miners (drivechains/Hashrate Escrow)
- Hybrids

RSK blockchain

- Uses Smart Bitcoin as its native currency
- Provides stateful smart-contracts and 15-secs block times.
- 21% of Bitcoin's hashing rate (in merge-mining)
- 2-way (1:1) peg with global federation
- Soon to deploy custom and auditable HSMs for federators
- 2-way peg controlled by smart-contract
- Next release: intelligent HSMs that validate PoW, real-world delays and generate time-locked transactions with covenants.

SPV Sidechain

The RSK Case

CountAcks
Drivechain in the future?

Affected blocks in BTC-> secoins transfer

Command:
Immediately
Release of Funds
using transaction T

Command:
Immediately
Release of Funds
using transaction T

ACKs and NACKs

- "ACK:" following FULL_ACK_LIST
- FULL_ACK_LIST: { CHAIN_ACK_LIST... }
- CHAIN_ACK_LIST: { sidechain_id ACK_LIST }
- ACK_LIST: { ACK... }
- ACK: { tx_hash_prefix [tx_hash_preimage] }
- {} = empty list

Coinbase Transaction

Version
Previous Transaction Hash
Index Number
Coinbase Length
Coinbase Script
Amount of new Bitcoins
Script Length
Challenge Script

ACKs and NACKs

```
ACK: { { XNET { {} 0x101010....10 } } } Proposal and ack in XNET h(0x10....10)=0xbaa501b37267c06d8d20f316622f90a3e343e9e730771f2ce2e314b794e31853)
ACK: { { XNET { {0xba} } } } 2nd positive ack for the proposal negative ack for all proposals in XNET
ACK: { { XNET { } } } { YNET { {0x3e9e7307} } } } Mix for 2 sidechains
```

• Note: serialization is binary, not ASCII.

OP_COUNT_ACKS

- The opcode has the following arguments:
 - Poll_start_blocknum
 - sidechain_id
 - ack_period (in blocks)
 - delay_period (in blocks)
 - liveness_period (in blocks)

OP_COUNT_ACKS

- The opcode results:
 - ACK count
 - NACK count

Sample ScriptPub / Scriptsig (no P2SH / P2WSH)

```
ScriptSig: 521000
ScriptPub:
                          // ("XNET")
         58 4e 45 54
         144
         1440
         144
         OP COUNT ACKS // Push Results
         OP 2DUP
                          // duplicate ack counts
         OP_GREATERTHAN // more positive than negative acks?
         OP_VERIFY
                          // abort if not
         OP_SUB
                           // compute positive minus negative, push result into stack
         72
                           // difference (positive-negative) acks required
         OP GREATERTHAN // More than 50% positive difference, put 1 on stack, else put 0
```


Sample script: Drivechain + 2 notaries

ScriptPub:
 OP_TOALTSTACK
 OP_IF <puble>
 OP_FROMALTSTACK OP_ADD
 OP_TOALTSTACK OP_ENDIF
 OP_IF <puble>
 OP_Bubkey2>
 OP_FROMALTSTACK OP_ADD
 OP_TOALTSTACK OP_ENDIF

OP_COUNT_ACKS OP_SWAP
OP_FROMALTSTACK OP_ADD
OP_DUP OP_ADD OP_DUP OP_ADD
OP_DUP OP_ADD OP_ADD
OP_SWAP OP_2DUP
OP_GREATERTHAN OP_VERIFY
OP_SUB 72 OP_GREATERTHAN

- ScriptSig: 1 <Signature1> 1 <Signature2> 500000
- Condition: x=(4 * sig + acks), then (x > naks) and (x-naks > 72)

Mandatory Delays & Chances to Revert in RSK

RSK User commands fund release

RSK Smart-contract receives command and forces delay

RSK Smart-contract buids tx commands sign tx Federation sign transaction

RSK Smart-contract receives signatures, delays, and inform miners to ack

Drivechain

Miners acknowledge during a poll period and forces delay

Acks threshold reached.
COUNT_ACKS forces delay

Transaction is included in block

CheckSequenceVerify output forced delay with covenants

Funds transfer enabled

User use funds

CountAcks Design Rationale

- Lightweight soft-fork
- Interoperability with scripting system
- Zero risk of invalidating a block
- No additional computation during blockchain management and re-org.
- Incentive compatible: sidechain pays for withdrawal cost
- No inherent change in Bitcoin security model
- Bounded computation of poll results (2 sigops cost)
- Strong protection from DoS attacks
- Minimum block space consumption (800 bytes per withdrawal typical)
- Zero risk of cross-secondary chain invalidation
- Time for proactive and reactive measures (up to 90 days)

Comparison between CountAcks BIP and Hashrate Escrows BIP memory use

Property	CountAcks	Hashrate Escrows
Lines of code	~600	~4000
Initial sidechain registration (in DB)	0	125 Kbytes
Withdrawal (max blockchain space)	3 Kbytes	157 Kbytes
Withdrawal (avg blockchain space)	864 bytes	157 Kbytes

Sources:

https://github.com/drivechain-project/docs/blob/master/bip1-hashrate-escrow.md https://github.com/rsksmart/bips/blob/master/BIP-R11.md

New BIP and reference implementation

https://github.com/rsksmart/bips/blob/master/BIP-R11.md

https://github.com/rootstock/bitcoin/tree/op-countacks_devel

Summary

- Bitcoin federated sidechains have risks of federators stealing the locked funds
- Adding a CountAcks drivechain layer miners prevent federators malicious activity
- You can use also use a pure CountAcks sidechain.

www.RSK.co

Interoperability

- COUNT_ACKS opcode allow the combination of a drivechain with any other feature of the scripting system.
- Allows to bootstrap a merged-mining two-way pegged cryptocurrency from an initial state when is has no merge-mining engagement to a state where it has a high merge-mining engagement, using notary signatures during the initial period.
- scriptPub can be parametrized for any combination

Zero risk of block invalidation

- The opcode and miner's ack-ing algorithm was designed such that acks in the coinbase field can never invalidate a block.
- This prevents attacks against pools from malicious or faulty proxy consensus observer plug-ins
- Reduces the risk for miners not implementing the soft-fork of extending a soft-forked block that is invalid because of the coinbase tag.

Minimum Computation and Incentive compatibility

- No blockchain computation overhead if there is no sidechain activity
- Sidechain pays for every cycle of computation

Bitcoin security model

- poll liveness period to be equal or higher than 100 blocks, to respect the same maturity rule as coinbases (enables urgent community hardforks)
- Any blockchain that uses the bitcoin unit of account and holds a high amount of bitcoins could affect the security of Bitcoin.
- Also merge-mining can modify the incentives of Bitcoin miners, and those incentives should be analyzed.

Time for proactive and reactive measures

- 2 days max for polls allow humans to detect corrupted or hacked miners and warn to stop acknowledge process.
- 30 days before transaction becomes valid prevents from massive dishonest miners behavior.
- 2 days of liveness enables publication even if miners interest decrease significantly.

Bounded computation of poll results

- The liveness period and ack period have maximum values (currently 4320 blocks, or one month).
- Benefits:
 - sets a bound to opcode running time
 - is compatible with blockchain pruning
- Still to cache one months of tags requires 1.3 Mbytes top

Strong protection from DoS attacks

- Polls created for unknown sidechains can be safely ignored by miners.
- Unknown or fake transaction candidates do interfere with honest candidates and are automatically negatively acknowledged.

Minimum block space consumption

- Transaction id prefixes for candidates could reduce space in average to 2 bytes per ACK.
- Pre-image publication prevents prefix collusion to force miners to use full ids.
- For example, if 100% of the miners acknowledge a proposal for 100 blocks then the space consumption would be ~ 234 bytes/proposal.
- Cloinbase space allows 12 sidechains making 4 withdrawals per day each (or one sidechain making 50).

Zero risk of cross-sidechain invalidation

- Sizes in bytes.
- Easy skip if inner tag is malformed.
- Miner may collect sidechain acks in serialized format without risk of interaction.

Security

- The security parameters of a specific sidechain are defined by the sidechain designers.
- Exodus addresses should be pay-to-witness-script-hash (P2WSH) address containing all arguments.
- There COUNT_ACKS opcode cannot be used as a vector to perform a denial-of-service attacks (CPU, memory, disk access)
- Sidechain designers should be able to choose between long preinclusion delays or long post-inclusion covenants.

Computational Cost

- The cost of the COUNT_ACKS opcode in terms of sigops is set to 2 (a maximum of 288 blocks are scanned).
- The maximum amount of information that has to be fetched is 12 Kbytes.
- Assumes in-memory cache (maximum 500 Kbytes, typically 3 Kbytes).
- Max cost in hashing of tx_hash_preimage to obtain tx_hash is 1440 hash digests. This is comparable to the cost of 2 signature verifications.

Changes from previous proposal (2016)

- Liveness and poll times incremented from 1 day to 2 days
- Variable delay time added of to 3 months of blocks (before it was 100 blocks)

Blind Merge-mining

Need High sidechain Tx fees

Protections against 51% dishonest miners using Intelligent HSMs

- On-chain release pre-signals
 - with minimum accumulated difficulty
 - Combined other soft-forks
 - Transactions ids that also derive from block hash using a bit in nVersion (finalID = H(blockHash | originalID)
 - Using conditional to block difficulty (OP_DIFFICULTY opcode)
 - Or transactions that can only be anchored only after certain block (OP_BLOCK_HASH_AT opcode)
 - No need to standardize txs using new opcodes
- Covenants through txs with time-locked txs, and return outputs paths