
Working on scripts with logical opcodes
Thomas Kerin

1

Thanks to the speakers committee and conference organizers!

2

Logical opcodes
Script has logical opcodes - IF/NOTIF/ELSE/ENDIF . Allows for different redeem conditions to
be set, depending on who is spending the bitcoins, what information they have, etc.

LN: Commitment transaction to self output:

OP_IF
 [revocationPubKey]
OP_ELSE
 [relativeTimelock] OP_CHECKSEQUENCEVERIFY OP_DROP
 [localDelayedPubKey]
OP_ENDIF
OP_CHECKSIG

Two people can spend from this script. Immediately one can spend with the revocation key, or
with the delayed key, wait for the timelock to elapse.

https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md

3

https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md

LN: Offered HTLC Outputs

OP_DUP OP_HASH160 <RIPEMD160(SHA256(revocationpubkey))> OP_EQUAL
OP_IF
 OP_CHECKSIG
OP_ELSE
 <remote_htlcpubkey> OP_SWAP OP_SIZE 32 OP_EQUAL
 OP_NOTIF
 # To local node via HTLC-timeout transaction (timelocked).
 OP_DROP 2 OP_SWAP <local_htlcpubkey> 2 OP_CHECKMULTISIG
 OP_ELSE
 # To remote node with preimage.
 OP_HASH160 <RIPEMD160(payment_hash)> OP_EQUALVERIFY
 OP_CHECKSIG
 OP_ENDIF
OP_ENDIF

https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md

They're as big as they need to be, so really want software to be able to deal with these, by
determining a scripts signing requirements, and checking that signing instructions are correct.

4

https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md

Quick intro, logical opcode internals

Logical opcodes control the scripts execution flow by managing a vector<bool> vfExec .

Before every opcode is interpreted, we check if execution is currently active:

bool fExec = !count(vfExec.begin(), vfExec.end(), false);

/* .. */

if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4) {
 /* .. */
} else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF)) {
 switch (opcode) {
 // interpret actual instructions
 }
}

5

OP_IF / OP_NOTIF pop from the mainStack and cast the value into a boolean.

OP_IF pushes the fValue directly, OP_NOTIF pushes !fValue

case OP_IF:
case OP_NOTIF:
{
 // <expression> if [statements] [else [statements]] endif
 bool fValue = false;
 if (fExec)
 {
 if (stack.size() < 1)
 return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
 valtype& vch = stacktop(-1);
 fValue = CastToBool(vch);
 if (opcode == OP_NOTIF)
 fValue = !fValue;
 popstack(stack);
 }
 vfExec.push_back(fValue);
}
break;

6

OP_ELSE inverts the first value on vfExec

 case OP_ELSE:
 {
 if (vfExec.empty())
 return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
 vfExec.back() = !vfExec.back();
 }
 break;

OP_ENDIF pops a value from the vfExec, moving us out of this conditional section

 case OP_ENDIF:
 {
 if (vfExec.empty())
 return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL);
 vfExec.pop_back();
 }
 break;

7

Execution flow with conditional sections

So we know there's a stack which controls execution flow, and depending on its state different
sections of the script will be active, meaning different requirements in terms of signing.

In simple scripts fExec is true the entire time, as vfExec is never touched.

 []
 t OP_DUP
 t OP_HASH160
 t [pubKeyHash1]
 t OP_EQUALVERIFY
 t OP_CHECKSIG

8

[01] [00] [1]
 t t t OP_HASH160 OP_DUP [Hash160(commitPreimage)] OP_EQUAL
 t t t OP_IF
 t [timeout: 0x0300a41f] OP_CHECKSEQUENCEVERIFY OP_2DROP
 t [aliceKey]
 t t t OP_ELSE
 t t [Hash160(revokePreimage)] OP_EQUAL
 t t OP_NOTIF
 t 0x044ad6ed5a OP_CHECKLOCKTIMEVERIFY OP_DROP
 t t OP_ENDIF
 t t [bobKey]
 t t t OP_ENDIF
 t t t OP_CHECKSIG

 [1]: Sig(AliceKey) [CommitPreimage]
 [00]: Sig(BobKey) OP_0 OP_0
 [01]: Sig(BobKey) [RevokePreimage] OP_0

The [1] [0,1], [0,0] values are so named after the values pushed by IF / NOTIF in order to
direct flow control along that pathway, bearing in mind they get modified by other instructions
later.

9

Determining individual branches, and their identifier

For us to ask software that supports signing 'everything' to sign for a certain branch, we need
to be able to identify the branch, and so it can then check what the signing requirements are.

To determine all the branches, we iterate over the scripts instructions and partially interpret
them: only processing logical opcodes and maintaining a vfExec for each code path as they
are discovered.

We start out with one code path. We learn about new codepaths when we process IF and
NOTIF. And as we run through opcodes, we associate them with any currently active
branches.

After processing the script, we can detect unbalanced conditional sections by checking each
vfExec is empty.

10

 1 [] OP_HASH160 OP_DUP [Hash160(commitHash)] OP_EQUAL
 / \
 2 [1] [0] OP_IF
 3 / \ 0x0300a41f OP_CHECKSEQUENCEVERIFY OP_2DROP [aliceKey]
 4 / \ OP_ELSE
 5 / \ [Hash160(revokeHash)] OP_EQUAL
 6 [0] [1] OP_NOTIF
 7 0x044ad6ed5a OP_CHECKLOCKTIMEVERIFY OP_DROP
 8 OP_ENDIF
 9 [bobKey]
 10 OP_ENDIF
 11 OP_CHECKSIG

11

1. All code paths (1 currently). share the start because vfExec = []

2. Execution forks with OP_IF. [] forks into [1] or [0].

3. This is the first conditional branch, for it to run it's vfExec would need to be [1]

4. ELSE inverts the only vfExec value, either (0 -> 1) or (1 -> 0).

5. Code paths for which the first IF yielded [0] will execute this section, because ELSE
mutated the only value on vfExec to true.

6. Code paths that started from [0] fork into [0, 1], and [0, 0].

7. This section is only active where the NOTIF branch pushed true, hence this path is [0, 1]

8. The conditional section 7 is closed. [0, 1] loses a vfExec value, and still remains active.
[0, 0] loses a value, becoming active.

9. This section is shared for [0, 1] and [0, 0]

10. ENDIF pops the last vfExec value from all code paths, making execution active globally
again.

12

Path [1] - requires knowledge of the preimage of Hash160(commitHash), a CSV lock of 24
hours, and a signature by Alice.

1 OP_HASH160 OP_DUP [commitHash: 0x1436e11d] OP_EQUAL
2 OP_IF
3 0x0300a41f OP_CHECKSEQUENCEVERIFY OP_2DROP [aliceKey: 0x21037569...]
4 OP_ELSE
6 OP_NOTIF
8 OP_ENDIF
10 OP_ENDIF
11 OP_CHECKSIG

13

Path [0, 1] - allows Bob to spend without the preimage of Hash160(revokeHash), but only after
some date.

1 OP_HASH160 OP_DUP [commitHash: 0x1436e11d] OP_EQUAL
2 OP_IF
4 OP_ELSE
5 [revokeHash: 0x14442328...] OP_EQUAL
6 OP_NOTIF
7 0x044ad6ed5a OP_CHECKLOCKTIMEVERIFY OP_DROP
8 OP_ENDIF
9 [bobKey: 0x21036172...]
10 OP_ENDIF
11 OP_CHECKSIG

14

Path [0, 0] - allows Bob to spend with the preimage of Hash160(revokeHash) at any time.

1 OP_HASH160 OP_DUP [commitHash] OP_EQUAL
2 OP_IF
4 OP_ELSE
5 [revokeHash: 0x14442328b49e3071bddbafc0f8b7b6aad0b7dbcc63] OP_EQUAL
6 OP_NOTIF
8 OP_ENDIF
9 [bobKey]
10 OP_ENDIF
11 OP_CHECKSIG

15

Signing

https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki#escrow-with-timeout

OP_IF
 2
 0x039dcd06ba35bdb98ce55b848f19e5171b7e8e1200be8036cbf76389dc3229f5b2
 0x03e4dd72c88df5759c89e13432cec27080349c82f3d78ad2cce94d9ca595ecef8c
 0x0252819de2777f73a94457e67570ce9fa33bb9344e8c8467149e98d4f8d8fc5712
 3
 OP_CHECKMULTISIG
OP_ELSE
 0x805141 OP_CHECKSEQUENCEVERIFY OP_DROP
 0x039dcd06ba35bdb98ce55b848f19e5171b7e8e1200be8036cbf76389dc3229f5b2
 OP_CHECKSIG
OP_ENDIF

16

https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki#escrow-with-timeout

MAST:

MAST "Merkelized Abstract Syntax Tree" allows for for different redemption pathways to be
committed for a particular script, such that redeeming on one pathway reveals only that
pathways instructions - the others remain private.

(Currently) Two proposals to add MAST to bitcoin:

BIP 114 "[Segwit V1] Merkelized Abstract Syntax Tree" by jl2012.

BIP's 116+117 "CHECKMERKLEBRANCHVERIFY" and "Tail Call Execution Semantics"
by maaku.

17

This line of research was started after reading the BIP114 MAST proposal and wondering
about a method to flatten a legacy script into it's MAST equivalents.

The example had so many features which made it seem a technically interesting problem. I
haven't yet succeeded at this, although it lead me through a few topics which were worthwhile
(branch processing) which is useful for people dealing with logical opcodes on the network
today.

18

HASH160 DUP [revokeHash] EQUAL
IF
 "24h" CHECKSEQUENCEVERIFY 2DROP
 [AliceKey]
ELSE
 [commitRevocationHash] EQUAL
 NOTIF
 "Timestamp" CHECKLOCKTIMEVERIFY DROP
 ENDIF
 [BobKey]
ENDIF
CHECKSIG

HASH160 [revokeHash] EQUALVERIFY "24h" CHECKSEQUENCEVERIFY DROP
[AliceKey] CHECKSIGVERIFY

HASH160 [commitRevocationHash] EQUALVERIFY [BobKey] CHECKSIGVERIFY

"Timestamp" CHECKLOCKTIMEVERIFY DROP [BobKey] CHECKSIGVERIFY

19

To MASTIFY a script:

Determine mutually exclusive code paths of a script

IF/NOTIF (tests for flow control) replaced with VERIFY / NOT VERIFY (assertions about
the state of the stack)

Joining [OP_CHECKSIG, OP_CHECKMULTISIG, OP_EQUAL] with a following
OP_VERIFY

Trim instructions used by the old script purely for flow control purposes, which are
unnecessary in a MASTified branch (hashlocks, for example)

20

Projects doing some of this already:

https://github.com/Bit-Wasp/bitcoin-php (branch parsing, not MAST)

https://github.com/kallewoof/btcdeb (branch parsing, MAST, but without instruction
optimization)

a web based tool for MAST by Nicolas Dorier (branch parsing, MAST, but without
instruction optimization)

21

https://github.com/Bit-Wasp/bitcoin-php
https://github.com/kallewoof/btcdeb

That's all folks!

22

