Dandelion: Privacy-Preserving Transaction Propagation in Bitcoin's P2P Network

Presenter: Giulia Fanti

Joint work with: Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Brad Denby, Shruti Bhargava, Andrew Miller, Pramod Viswanath

Privacy requirement:

Address and real identity must be unlinkable

Today, messages spread with diffusion.

Diffusion is vulnerable to source detection!

Biryukov et al. CCS 2014 Koshy *et al.,* Financial Crypto 2014 F. and Viswanath, NIPS 2017

Dandelion

Lightweight transaction propagation algorithm with provable privacy guarantees.

Venkatakrishan et al., ACM Sigmetrics 2017; F. et al., ACM Sigmetrics 2018

FAQ: Why not alternative solutions?

Connect through Tor

I2P Integration (e.g. Monero)

Model

Assumptions and Notation

Adversarial model

Metric for Anonymity

Precision $\frac{1}{n}\sum_{v} \frac{1\{M(v' \text{ s tx}) = v\}}{\# \text{ tx mapped to v}}$

Goal:

Design a distributed flooding protocol that minimizes the maximum precision and recall achievable by a computationally-unbounded adversary.

Fundamental Limits

What are we looking for?

Asymmetry

What can we control?

Given a graph, how do we spread content?

What is the underlying graph topology?

How often does the graph change?

Why Dandelion spreading?

Graph Topology: Line

Dynamicity: High

Change the anonymity graph frequently.

DANDELION Network Policy

Given a graph, how do we spread content?

What is the anonymity graph topology?

How often does the graph change?

*For $p < \frac{1}{3}$

Performance: Achievable Region

Why does DANDELION work? Strong mixing properties. Complete graph Tree (Crowds, Tor) Too many paths Too many leaves Precision: $\frac{p}{1-p}(1-e^{p-1})$ Precision: O(p)

Graph construction in practice

Choose d=1 outbound edges

Gives approximate d-regular anonymity graph

What are drawbacks of Dandelion?

Attack	Effect on Dandelion	Proposed Solution	Effect
Graph Learning	Precision increases to $O(p)$	4-regular anonymity graph	Limits precision gain (Thm. 1)
Intersection	Empirical precision increase	Pseudorandom forwarding	Improved robustness (Thm. 2)
Graph construction	Empirical precision increase	Non-interactive construction	Reduced precision gain
Black hole	Transactions do not propagate	Random stem timers	Provides robustness (Prop. 3)
Partial deployment	Arbitrary recall increase	Blind stem selection	Reduces recall (Thm. 3)

Dandelion++: Lightweight Cryptocurrency Networking with Formal Anonymity Guarantees, ACM Sigmetries 2018

Experiments on mainnet

Take-Home Messages

- 1) Bitcoin's P2P network has weak anonymity protections
- 2) DANDELION may be a lightweight solution against large-scale deanonymization attacks (but doesn't replace Tor!)
- 3) More information at:

https://github.com/dandelion-org/bips https://github.com/dandelion-org/bitcoin

Simulation on Bitcoin P2P Topology

F. and Viswanath, NIPS 2017

4-Regular Graphs

- More robust against adversaries that learn the graph
- Per-transaction routing vulnerable to intersection attacks

One-to-one Routing

- **Pro**: Increases cost of graph-learning attacks
- Con: Can make transactions from the same source easier to link

FAQ: Why not Tor?

- Tor, VPNs, etc. address this problem
- Only work for savvy or privacy-aware users
- If Bitcoin is to become a mainstream payment system, it should protect everyone's transactions
- Dandelion: lightweight, easy to integrate into existing network

Narayanan and Möser, 2017

Moving from theory to practice

Implementation: Dandelion spreading

Anonymity graph construction

Adversarial Model: Byzantine nodes

Learn the graph

Misbehave during graph construction

Misbehave during propagation

4-regular graphs

Anonymity graph construction

Dealing with stronger adversaries

Latency Overhead: Estimate

Information Propagation in the Bitcoin Network, Decker and Wattenhofer, 2013

DANDELION vs. Tor, Crowds, etc.

1) Messages propagate over the **same** cycle graph

2) Anonymity graph changes dynamically.

3) No encryption required.

Anonymity graph construction

Degree

Dealing with stronger adversaries

Learning the anonymity graph

Manipulating the anonymity graph

DANDELION++ Network Policy

Given a graph, how do we spread content?

What is the anonymity graph topology?

How often does the graph change?